特別講演

11 月	1日 (火) 15:10-15:50 Strigolactones and plant development	13
11 月	1日(火) 16:00-16:40 Microbes and microbial products for biological control of weeds Maurizio Vurro (The Institute of Sciences of Food Production, C.N.R., Italy)	14
11 月	3 1日 (火) 16:40-17:20 奥日光におけるシカの増加と森林生態系への影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	受賞講演	
11月	引日(火)14:45-15:10	
学会	会 賞 オーキシンの信号伝達・輸送に関するケミカルバイオロジー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	口頭発表 (演題及び発表者)	
11 月	引日(火)10:00-11:00	
1.	植物成長メカニズムの化学的解析研究 ○下高原宏明 ¹ 、羅 明 ¹ 、中野雄司 ² 、浅見忠男 ¹ (¹ 東大院・農生科・応生化、 ² 理研基幹研究所)	17
2.	ジベレリン代謝酵素制御剤 CBTC の作用機構と生理作用 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
3.	ジベレリン生合成酵素 CYP701A 選択的阻害剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
4.	ジベレリン生合成における 13 位水酸化反応を阻害する物質 〇酒井杏奈 1 、新間優子 2 、大西利幸 3 、水谷正治 4 、平井伸博 5 、轟 泰司 2 (1 静大院農、 3 静大・若手グローバル研究リーダー育成拠点、 4 神戸大院農、 5 京大院農)	20
5.	ABA 8'- 水酸化酵素選択的阻害剤 abscinazole-E2B の光学活性体 ○岡崎真理子 ¹ 、Hataitip Nimitkeatkai ² 、近藤 悟 ² 、水谷正治 ³ 、平井伸博 ⁴ 、大西利幸 ⁵ 、轟 泰司 ⁶ (¹ 静大院農、 ² 千葉大院園芸、 ³ 神戸大院農、 ⁴ 京大院農、 ⁵ 静大・若手グローバル研究リーダー育成拠点、 ⁶ 静大農)	21
6.	アブシジン酸受容体 PYLs のアンタゴニスト ○武藤拓也¹、岡本昌憲²、Sean Cutler²、平井伸博³、轟 泰司⁴ (¹静大院農、²University of California, Riverside、³ 京大院農、⁴静大農)	22
7.	オーキシン生合成阻害剤 KOK1169 の作用機構解析	23
8.	新規オーキシン生合成阻害剤の機能解析 \bigcirc 派野和雄 1 、國土祐未子 1 、喜久里貢 2 、成川 恵 2 、浅見忠男 3 、嶋田幸久 2 $(^1$ 農研機構・近中四農研、 2 横浜市大・木原生研、 3 東大院・農生科・応生化)	24
9.	IAA 生合成阻害剤を用いた IAA 関連変異体の探索 \odot 安藤卓也 1 、中村英光 1 、北畑信隆 1 、中野雄司 3 、嶋田幸久 2 、浅見忠男 1 $(^1$ 東大院・応生化、 2 横浜市大・木原研、 3 理研・ASI)	25
10.	新奇トリアゾール系発根促進剤の探索 〇白井郁也 ¹ 、福井康祐 ¹ 、伊藤晋作 ¹ 、北畑信隆 ¹ 、根岸直希 ² 、河岡明義 ² 、浅見忠男 ¹ (¹ 東大院・農生科・応用化、 ² 日本製紙・アグリ・バイオ研)	26

11.	複数のホルモン応答に影響を及ぼす化合物の探索 ····································	27
12.	ABP1 特異的リガンドの合成と生物活性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
13.	細胞内オーキシン分布の可視化に関する研究	29
14.	光標識によるサイトカイニン受容体の結合部位の同定 〇安藤和紀 1 、青山卓史 2 、山篠貴史 3 、水野 猛 3 、野崎 浩 1 、林謙一郎 1 $(^1$ 岡山理大・院・生物化学、 2 京大・化学研究所、 3 名大・院・農)	30
15.	ジャスモン酸生合成阻害剤の構造修飾 ○王 敬銘、中居宏太、橘 京佑、山田和弘、吉澤結子 (秋田県立大 応用生物)	31
16.	新規ブラシノステロイド生合成阻害剤	32
17.	ブラシノステロイド情報伝達突然変異体 <i>bil5</i> 原因遺伝子の機能解析と情報伝達因子特異的阻害剤のケミカルスクリーニングの 試行	33
18.	ブラシノステロイド情報伝達因子 BIL4 の細胞内局在と機能解析 ····································	34
19.	ブラシノステロイド情報伝達突然変異体 $bss1$ 原因遺伝子のシグナル伝達経路上の機能発現部位と機能発現機構に関する解析 … ○嶋田勢津子 1 、小松知之 $^{1.2}$ 、中澤美紀 3 、松井 南 3 、川出 洋 2 、安部 浩 2 、夏目雅裕 2 、中野明彦 $^{1.4}$ 、浅見忠男 $^{1.5}$ 、中野雄司 $^{1.6}$ (1 理化学研究所・基幹研、 2 東京農工大・院、 3 理化学研究所・植物センター、 4 東大院・理、 5 東大院・農生科、 6 JST-さきがけ)	35
20.	ブラシノステロイド情報伝達突然変異体 <i>bil3</i> 原因候補遺伝子のゲノム上の重複進化の可能性と機能解析 ····································	36
11 F	引日(火)11:00-12:12	
21.	ブラシノステロイド情報伝達突然変異体 <i>bil2</i> の環境応答における機能解析 ○ Davaapurev Bekh-Ochir ^{1,3} 、嶋田勢津子 ¹ 、中澤美紀 ² 、松井 南 ² 、中野明彦 ^{1,4} 、浅見忠男 ^{1,3} 、中野雄司 ^{1,5} (¹ 理研・基幹研、 ² 理研・PSC、 ³ 東大院・農生科・応生化、 ⁴ 東大院・理・生物、 ⁵ JST・さきがけ)	37
22.	ブラシノステロイド情報伝達突然変異体の FOX ラインからの探索と新しい変異体 $bil7$ の植物形態形成における機能解析 〇宮地朋子 $^{1.2}$ 、市川尚斉 3 、松井 南 3 、中野明彦 $^{1.4}$ 、浅見忠男 $^{1.2}$ 、中野雄司 $^{1.5}$ (1 理研・基幹研、 2 東大院・農生科・応生化、 3 理研・PSC、 4 東大院・理・生物、 5 JST- さきがけ)	38
23.	エチレン様活性化合物の生理活性と作用機構の解析 ○北畑信隆 ^{1,2} 、早瀬大貴 ^{1,2} 、Melanie M.A. Bisson³、湯本弘子 ⁴ 、中野雄司 ² 、中山真義 ⁴ 、Gerog Groth³、浅見忠男 ^{1,2} (¹ 東大院・農生科、 ² 理研、³Heinrich-Heine University、 ⁴ 花き研究所)	39
24.	植物病害抵抗性の抑制化合物のスクリーニング 〇徐 銀卿 1 、中村英光 1 、前田 哲 2 、森 昌樹 2 、浅見忠男 1 (1 東大院・農生科、 2 (独) 農業生物資源研究所・耐病性ユニット)	40
25.	アシルスペルミジン誘導体のイネ病害抵抗反応における作用と役割 〇彦坂政志 1 、中村英光 1 、森 昌樹 2 、岡田憲典 3 、山根久和 3 、浅見忠男 1 $(^1$ 東京大・院・農学生命科学、 2 農業生物資源研究所、 3 東大・生物生産工学研究センター)	41
26.	新規ストリゴラクトンアナログ Debranone の構造展開 ・・・・ 〇福井康祐、伊藤晋作、浅見忠男 (東京大・農学生命科学研究科)	42

27.	新規ストリゴラクトン生合成阻害剤	43
28.	ストリゴラクトン生合成阻害剤を用いた変異体の探索 〇山上大智、福井康祐、伊藤晋作、中村英光、浅見忠男 (東大院・農生科・応生化)	44
29.	BC 環開環型ストリゴラクトンアナログの合成と AM 菌および根寄生雑草に対する活性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
30.	5-Deoxystrigol および GR24 をリガンドとする光親和性プローブの合成と活性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
31.	AM 菌のストリゴラクトン受容体単離のための高活性型光親和性プローブの合成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
32.	CLV3 類縁体合成と構造活性相関・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
33.	気孔形成を調節するペプチドホルモンの機能解析	49
34.	シロイヌナズナのインドール -3- 酢酸生合成経路の解明 1 で 1	50
35.	シバヤナギハウラタマフシにおけるゴール形成機構に関する研究 〇山口大貴 1 、田中弘毅 2 、徳田 誠 3 、浅見忠男 2 、鈴木義人 1 $(^1$ 茨城大・農・資源生物、 2 東大・院・応用生命化学、 3 九大・高等教育開発推進センター)	51
36.	昆虫に含まれる内生インドール -3- 酢酸の起源・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
37.	青色光照射によって誘導される cell-wall stiffness と光屈性との関連性 〇山田小須弥 ¹ 、リファットジャビン ^{1,2} 、長谷川剛 ^{1,3} 、長谷川宏司 ^{1,3} 、繁森英幸 ¹ (¹ 筑波大・院・生命環境、 ² AUN, Nigeria、 ³ 神戸天然物化学)	53
38.	誘導体化による LC-ESI-MS/MS を用いたジベレリン分析の高感度化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
39.	ジベレリン信号伝達因子 GAF1 複合体の相互作用機構の解析 ○深澤壽太郎 ^{1,2,3} 、村越 悟 ² 、寺村 浩 ² 、那須野慶 ² 、西田尚敬 ² 、吉田充輝 ² 、神谷勇治 ¹ 、高橋陽介 ³ 、山口信次郎 ¹ (¹ 理研・植物科学研究センター、 ² 東理大・基礎工・生物工、 ³ 広島大・理・生物科学)	55
40.	シロイヌナズナにおける新奇アブシジン酸輸送体の同定 菅野裕理、花田篤志、神谷勇治、○瀬尾光範 (理研・PSC)	56
41.	シロイヌナズナ・アクセッションにおける種子休眠性と植物ホルモン内生量の網羅的解析 · · · · · · · · · · · · · · · · · · ·	57
42.	シロイヌナズナ種子の休眠と発芽の高温阻害におけるフラボノールの役割	58
43.	6 倍体コムギにおけるアブシジン酸代謝酵素遺伝子の2重変異体の解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59

44.	低窒素条件下でアプシジン酸およびサイトカイニンを処理したキュウリの葉色変化における活性酸素の関与	60
11 月	3 2 日 (水) 9:00-10:24	
45.	ゼニゴケが生産するストリゴラクトンの解析 ····································	61
46.	ソラマメが生産するストリゴラクトンの解析 ○久嶋秋美 ¹ 、来生貴也 ¹ 、謝 肖男 ¹ 、米山香織 ¹ 、内田健一 ² 、Mónica Fernández-Aparicio ³ 、Diego Rubiales ³ 、横田孝雄 ² 、野村崇人 ¹ 、米山弘一 ¹ (¹ 宇都宮大・雑草科学、 ² 帝京大・バイオ、 ³ CSIS, Córdoba, Spain)	62
47.	ドクダミが生産する新規ストリゴラクトンの探索 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	63
48.	アレロパシー植物セイヨウチャヒキが生産する発芽刺激物質の探索 \bigcirc 高根沢恵子 1 、野村卓史 1 、米山香織 1 、来生貴也 1 、藤井義晴 2 、野村崇人 1 、謝 肖男 1 、米山弘一 1 $(^1$ 宇都宮大・雑草科学、 2 農業環境技術研究所)	64
49.	ヘアリーベッチが生産する根寄生雑草発芽刺激物質ストリゴラクトン 〇野村卓史 12 、謝 肖男 1 、米山香織 1 、金 賢一 12 、来生貴也 1 、野村崇人 1 、藤井義晴 3 、米山弘一 1 (1 宇都宮大・雑草科学研究センター、 2 東京農工大・連合農学、 3 農業環境技術研究所)	65
50.	ナタネが生産・分泌する根寄生雑草種子の発芽刺激物質 ○米山香織 ¹ 、謝 肖男 ¹ 、金 賢一 ¹ 、来生貴也 ¹ 、野村崇人 ¹ 、Bathilde Auger ² 、Philippe Delavault ² 、米山弘一 ¹ (¹ 宇都宮大・雑草科学、 ² ナント大学)	66
51.	根寄生植物種子発芽刺激活性におけるストリゴラクトンの構造要求性 〇金 賢一 12 、謝 肖男 1 、米山香織 1 、来生貴也 1 、野村崇人 1 、米山弘一 1 $(^1$ 宇都宮大・雑草科学、 2 東京農工大・連合農学)	67
52.	植物培養細胞をもちいたストリゴラクトン生合成経路の解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
53.	植物による GR24 変換反応の解析 ○平垣内雅規 ¹ 、本並宜子 ¹ 、上野琴巳 ¹ 、中嶌 瞳 ¹² 、滝川浩郷 ¹² 、水谷正治 ¹ 、杉本幸裕 ¹² (¹ 神戸大院・農・生命機能科学、 ² JST/JICA, SATREPS)	
54.	水酸化 GR24 の合成と構造解析 ○中嶌 瞳 ^{1,2} 、平垣内雅規 ¹ 、本並宜子 ¹ 、上野琴巳 ¹ 、水谷正治 ¹ 、滝川浩郷 ^{1,2} 、杉本幸裕 ^{1,2} (¹ 神戸大院・農・生命機能科学、 ² JST/JICA, SATREPS)	70
55.	ソルガムにおける 5-deoxystrigol の酸化的代謝 ······ ○本並宜子 ¹ 、中嶌 瞳 ¹² 、上野琴巳 ¹ 、水谷正治 ¹ 、滝川浩郷 ^{1,2} 、杉本幸裕 ^{1,2} (¹ 神戸大院・農・生命機能科学、 ² JST/JICA, SATREPS)	71
56.	ストライゴラクトンの枝分かれ抑制活性における構造要求性 〇井上共生 ¹ 、佐々木満 ¹ 、滝川浩郷 ¹² 、水谷正治 ¹ 、杉本幸裕 ¹² (¹ 神戸大院・農・生命機能科学、 ² JST/ JICA, SATREPS)	72
57.	根寄生雑草 Striga gesnerioides 種子の発芽を誘導するストライゴラクトンの構造要求性 ○上野琴巳 ¹ 、野村早紀 ¹ 、藤原真美 ¹ 、水谷正治 ¹ 、佐々木満 ¹ 、滝川浩郷 ¹² 、杉本幸裕 ¹² (¹ 神戸大院・農・生命機能科学、 ² JST/JICA, SATREPS)	73
58.	根寄生雑草 Striga gesnerioides 種子発芽を誘導するササゲ由来ストライゴラクトンの単離同定 ○野村早紀 ¹ 、上野琴巳 ¹ 、村中 聡 ³ 、水谷正治 ¹ 、滝川浩郷 ¹² 、杉本幸裕 ¹² (¹ 神戸大院・農・生命機能科学、 ² JST/JICA, SATREPS、 ³ 国際熱帯農業研究所)	74
59.	土壌乾燥条件下での根寄生雑草ストライガとソルガムのガス交換と気孔反応 ○井上知恵 ^{1,4} 、山内靖雄 ^{2,4} 、Amani Hamad Eltayeb ^{3,4} 、鮫島啓彰 ^{2,4} 、上野琴巳 ² 、Abdel Gabar Babiker ^{3,4} 、杉本幸裕 ^{2,4} (「鳥取大・乾燥地研究センター、 ² 神戸大院・農・生命機能科学、 ³ スーダン科学技術大学、 ⁴ JST/JICA, SATREPS)	75

60.	根寄生植物ヤセウツボの発芽を阻害するノジリマイシンの作用点 若林孝俊 ¹ 、東久保諒 ¹ 、安本周平 ¹ 、竹内安智 ² 、米山弘一 ² 、杉本幸裕 ³ 、村中俊哉 ¹ 、○岡澤敦司 ¹ (¹ 阪大院・工・生命先端工、 ² 宇都宮大、雑草科学研究センター、 ³ 神戸大院・農・生命機能科)	76
61.	シロイヌナズナにおける新規ストリゴラクトン情報伝達因子の単離と解析 ○中村英光 ¹ 、長江未有 ¹ 、増口 潔 ² 、森 昌樹 ³ 、浅見忠男 ¹ (¹ 東大院・農生科・応生化、 ² 理研・PSC、 ³ 農業生物資源研究所)	77
62.	ストリゴラクトン経路における $D14$ タンパク質の機能解析 〇瀬戸義哉 1 、花田篤志 1 、梅原三貴久 1 、武田 (神谷) 紀子 1 、秋山康紀 2 、山口信次郎 1 (1 理化学研究所・植物科学研究センター、 2 大阪府立大学院・生命環境)	78
63.	プロゲステロンおよびその生合成関連物質の LC-MS/MS による定量分析 ····· ○横田孝雄¹、内田健一¹、河西美穂¹、瀬戸秀春²、渡辺文太³、柴田恭美¹ (¹帝京大・理工・バイオ、²理研、³京都大・化研)	79
64.	シダおよびシロイヌナズナに存在する新規ブラシノステロイド 〇横田孝雄 1 、渡辺文太 2 、柴田恭美 1 、河西美穂 1 、平竹 潤 2 、Miklos Szekeres 3 (1 帝京大・理工・バイオ、 2 京都大学化研、 3 ハンガリー生物学研究所)	80
65.	イネのブラシノステロイド生合成遺伝子の発現に対する光の影響 〇朝比奈雅志 1 、野村崇人 2 、柴田恭美 1 、横田孝雄 1 (1 帝京大学・理工学部・バイオサイエンス学科、 2 宇都宮大学・雑草科学研究センター)	81
66.	AtDWARF1 catalyzes 24-reduction of 24-methylene brassinosteroids to 24-methyl brassinosteroids in <i>A. thaliana</i>	82
67.	Regulation of BRs and ethylene in <i>AtEXPA5</i> expression in <i>Arabidopsis thaliana</i> . Seung-Hyun Son, Ji Hyun Youn, Seung Hye Kang, Seong-Ki Kim (Department of Life Science, Chung-Ang University)	83
68.	イネのブラシノステロイド誘導性 bHLH 型転写因子 BU17 は BR のシグナル伝達の抑制を介して下位節間や種子の伸長を抑制する	84
69.	セイヨウナシ果実成長に伴う植物ホルモンの濃度変動 ○及川 彰¹、大塚貴生¹、軸丸裕介²、山口信次郎²、村山秀樹³、高品 善⁴、五十鈴川寛司⁴、斉藤和季²⁵、白武勝裕 ⁶ (¹理研・植物科学研究センター (鶴岡)、²理研・植物科学研究センター、³山形大・農学部、⁴山形県農業総合研究センター、 ⁵千葉大院・薬学研究院、 ⁶ 名古屋大院・生命農学研究科)	85
70.	ホウレンソウ雌雄株の内生植物ホルモン分析 〇野村崇人 1 、軸丸裕介 2 、関本 均 3 、神谷勇治 2 、米山弘一 1 、横田孝雄 4 (1 宇都宮大・雑草科学、 2 理研・PSC、 3 宇都宮大・農、 4 帝京大・バイオ)	86
71.	ホウレンソウ夏期栽培における 5- アミノレブリン酸 (ALA) 含有肥料の抽苔抑制効果 ····································	87
72.	5- アミノレブリン酸 (ALA) 含有肥料の茎葉処理に用いる至適展着剤および処理時間帯の検討	88
11 月	2 日 (水) 10:36-12:00	
73.	ATP 再生系導入によるテルペノイドの効率的な酵素合成法 〇貝沼遼介 1 、嶋根真奈美 1 、夏目雅裕 2 、菅井佳宣 2 、川出 洋 2 (1 東京農工大・院、 2 東京農工大・院・連合農学)	89
74.	酵素合成法による完全 C -13 標識化と多次元 NMR を組合せた miltiradiene 合成酵素の機能解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
75.	イヌカタヒバ由来のジテルペン環化酵素における基質認識多様性	91

76.	紫外線照射イネ葉からの新奇ジテルペン化合物 <i>ent-</i> 10-oxodepressin の単離 ···································	92
77.	イネフィトアレキシン モミラクトン B のいもち病菌による代謝産物の同定 ····································	93
78.	イネのジテルペン型フィトアレキシン生合成を制御する新規遺伝子の同定 田中惇訓 12 、中川 1 、岡田憲典 3 、前田 哲 1 、鎌倉高志 2 、山根久和 3 、〇森 昌樹 1 (1 農業生物資源研究所、 2 東理大院・理工、 3 東大・生物生産工学研究センター)	94
79.	イネのサクラネチン生合成酵素 OsNOMT の単離・同定 \bigcirc 清水崇史 1 、林 鳳秋 1 、長谷川守文 2 、岡田憲典 1 、野尻秀昭 1 、山根久和 1 $(^1$ 東大・生物生産工学研究センター、 2 茨城大・農学部)	95
80.	イネのジテルペン型ファイトアレキシン生合成酵素遺伝子クラスターに存在する P450 遺伝子の機能解析 〇山崎浩平 ¹、蓑田裕美 ¹、岡田 敦 ¹、岡田憲典 ¹、宮崎 翔 ²、川出 洋 ²、古賀仁一郎 ³、矢島 新 ⁴、薮田五郎 ⁴、豊増知伸 5 、野尻秀昭 ¹、山根久和 ¹ (¹ 東京大・生物生産工学研究センター、 2 東農工大・連農、 3 明治製菓、 4 東農大・応生化、 5 山形大・農)	96
81.	イネにおけるジテルペン型ファイトアレキシン生産を制御する bZIP 型転写因子 OsTGAP1 の機能解析	97
82.	イネの JA シグナル伝達経路における JA 応答性 bHLH 型転写因子 RERJI の役割・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
83.	シロイヌナズナ花茎の組織癒合におけるジャスモン酸と AP2 型転写制御因子の働き ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	99
84.	UDP-glucose 非依存性イネ由来糖転移酵素に関わる糖供与体の探索・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
85.	12 位の水酸化から始まるジャスモン酸イソロイシンンの代謝に関する研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	101
86.	葉部において生合成されたジャスモノイルイソロイシンの移動と生物活性	102
87.	イネの根特異的ストレス応答 $RSOsPR10$ 遺伝子のプロモーター解析	103
88.	イネの根における RSOsPR10 遺伝子発現のサリチル酸による抑制機構の解析 ○高尾 翠、富永真規子、行田敦子、西村岳志、駒野照弥、岡本龍史、小柴共一 (首都大院・理工・生命科学)	104
89.	貧栄養ストレスはアオウキクサの花成と内生サリチル酸量の増加を誘導する 嶋川 礼 1 、白矢武士 2 、石塚勇太 3 、○和田 楓 1 、竹能清俊 13 $(^1$ 新潟大・院・自然科学、 2 新潟大・農、 3 新潟大・理)	105
90.	シロイヌナズナの植物ホルモン応答性遺伝子発現を用いた植物ホルモンバランスの解析 〇永田真紀 12 、平山潤太 2 、伊沢 剛 2 、安田美智子 2 、篠崎 聰 2 、仲下英雄 1,2 $($ 1 東農大、 2 理研)	106
91.	イネの誘導抵抗性に対する環境ストレスの影響の詳細な解析 ○草島美幸 ^{1,2} , 平山潤太 ¹ , 安田美智子 ¹ , 篠崎 聰 ¹ , 仲下英雄 ^{1,2} (¹ 理研・イノベーション, ² 東農大・生応化)	107

92.	コムギおよびライムギにおけるペンソキサシノン配糖体代謝酵素の構造と座乗染色体の解析 ····································	108
93.	ごま葉枯病菌が感染したイネ sl 変異体におけるインドール -3- 酢酸の蓄積 〇深水愛理沙 1 、石原 2 、宮川 $[^3]$ 、中島廣光 2 、若狭 $[^4]$ 、 市場大・院・農、 4 、京都大・院・農、 4 、東農大・応生科)	109
94.	ニホンナシ黒斑病の病斑拡大におけるエチレンの作用 ○板井章浩¹、長谷川諒¹、伊垢離孝明¹、藤田直子¹、村山秀樹²、江草真由美¹、児玉基一朗¹ (¹鳥取大・農、²山形大・農)	110
95.	バイオフォトンは植物のストレス応答におけるシグナルクロストークを反映する ····································	111
96.	ヒメツリガネゴケの ppGpp 合成酵素遺伝子 (<i>PpRSH</i>) の機能解析 ····································	112
97.	チューリップ花弁からのチューリッポシド A 変換酵素遺伝子の単離 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
98.	ヤマノイモ属トゲドコロにおけるステロイドサポニン生合成に関与する遺伝子の探索 ····· 〇川崎 崇「、山村理恵 ² 、中安 大「、遠城道雄 ³ 、杉本幸裕」、水谷正治「 (「神戸大学大学院農学研究科、 ² 神戸大学農学部、 ³ 鹿児島大学農学部)	114
	傷害応答によって生合成されるオレウロペイン糖加水分解産物の構造解析 ○池田修也 ¹ 、松野 聡 ² 、大上将司 ² 、渡辺修治 ³ 、大西利幸 ⁴ (¹ 静大・農、 ² 静大院・農、 ³ 静大・創造、 ⁴ 静大・GRL)	
100.	バラ香気成分 2-phenylethanol の新規生合成経路の解明 平田 括 2 、石田晴香 3 、神田桃代 4 、渡辺修治 2 、〇大西利幸 1 (1 静大・GRL、 2 静大院・創造、 3 静大院・農、 4 静大・農)	116